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Abstract

In the following document a summary is given of research carried out under

award number FA9550-07-1-0195 from the Air Force Office of Scientific Re-

search. The objective of the proposed research was to develop and implement

high-order numerical algorithms for the simulation of steady and unsteady com-

pressible viscous flows with shocks. Notable achievements have been made in

three areas, namely algorithm analysis and development, code development,

and code utilization (to investigate various flow problems). With regards to

algorithm analysis and development, it has been proved for one-dimensional

linear advection that the spectral difference method is stable for all orders of

accuracy in a norm of Sobolev type (provided that the interior flux collocation

points are placed at the zeros of the corresponding Legendre polynomials). Also,

a new range of energy stable high-order methods based on the so called flux

reconstruction approach have been identified. With regards to code develop-

ment, two-dimensional and three-dimensional compressible viscous flow solvers

based on the spectral difference method have been written. The solvers can run

on meshes containing straight-sided and curved-sided quadrilateral and hexa-

hedral elements. Within the aforementioned codes a range of shock capturing,

automatic mesh refinement, mesh deformation, and convergence acceleration

algorithms have been implemented and tested. With regards to code utiliza-

tion, viscous compressible flow over various two-dimensional configurations has

been investigated. These configurations include pairs of cylinders (both sta-

tionary and rotating), plunging and pitching airfoils, and a deforming beam in

the wake of a cylinder. In three-dimensions, turbulent channel flow and turbu-

lent flow over an airfoil have been investigated, and preliminary simulations of
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viscous compressible flow over a flapping wing have been undertaken.

Keywords: High-Order Methods, Spectral Difference Methods, Shock Capturing,

Deforming Meshes, Time Integration Schemes
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1 Introduction

High-order numerical methods potentially offer better accuracy than low-order schemes

for a comparable computational cost. However, existing high-order methods are gen-

erally less robust and more complex to implement than their low-order counterparts.

These issues, in conjunction with difficulties generating high-order meshes, have pre-

vented the wide-spread adoption of high-order techniques in either academia (where

the use of low-order schemes remains widespread) or in industry (where the use of

low-order schemes is ubiquitous).
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The most mature and widely used high-order methods (at least for unstructured

grids) are based on a class of schemes developed in 1973 by Reed and Hill [1] to solve

the neutron transport equation. Such schemes have become known as discontinuous

Galerkin (DG) methods, and numerous variants have been developed for solving the

weak form of both hyperbolic [2] and elliptic systems [3]. The basic principle of

DG schemes is to decompose the approximate numerical solution both spatially, by

tessellating a given computational domain with separate elements, and also spectrally,

via a summation of piecewise discontinuous polynomial basis functions within each

element. A particularly simple and efficient range of DG schemes utilize high-order

Lagrange polynomial basis functions inside each element, defined by solution values

at a set of distinct nodal points. Such schemes have become known as nodal DG

methods, an exposition of which can be found in the recent textbook by Hesthaven

and Warburton [4], as well as in various articles by the same authors [5][6]. Similar

to nodal DG methods are spectral difference (SD) methods, (although unlike nodal

DG methods, SD methods are based on the governing system in its differential form).

The foundation for such schemes was first put forward by Kopriva and Kolias [7] in

1996 under the name of “staggered grid Chebyshev multidomain” methods. However,

several years later in 2006 Liu, Wang and Vinokular [8] presented a more general

formulation for both triangular and quadrilateral elements, which they termed the

SD method (a name which as been retained to the present).

In the study presented here, a broad effort to investigate, implement, test and ul-

timately improve the SD method was undertaken, with particular emphasis placed

on issues such as shock capturing and efficient time integration, which have hitherto

inhibited the widespread adoption of high-order methods amongst a wider scientific
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community.

2 Accomplishments

2.1 Overview

With regards to algorithm analysis and development, the main accomplishments of

the research can be summarized as follows:

• A proof demonstrating that particular SD schemes are stable (for linear advec-

tion) [9].

• The development of a new range of energy stable flux reconstruction (FR)

schemes [10].

With regards to code development, the main accomplishments of the research can be

summarized as follows:

• The development of a two-dimensional (2D) viscous compressible SD flow solver.

• The development of a three-dimensional (3D) viscous compressible SD flow

solver.

• The implementation of shock capturing algorithms suitable for use with the SD

method [11][12].
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• The implementation of automatic mesh refinement algorithms suitable for use

with the SD method [12].

• The implementation of mesh deformation algorithms suitable for use with the

SD method [13].

• The implementation of convergence acceleration schemes suitable for use with

the SD method [14].

With regards to code utilization, the main accomplishments of the research can be

summarized as follows:

• Studies of 2D viscous compressible flow over pairs of cylinders (both stationary

and rotating) [15][16].

• Studies of 2D viscous compressible flow over pitching and plunging airfoils [13].

• Studies of 2D viscous compressible flow over a deforming beam in a cylinder

wake.

• Studies of 3D turbulent channel flow [17].

• Studies of 3D turbulent flow over airfoils.

• Preliminary studies of 3D flow over a flapping wing.

Journal articles resulting from the research include:
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• P. E. Vincent, P. Castonguay. A. Jameson. A New Class of High-Order En-

ergy Stable Flux Reconstruction Schemes. Submitted to Journal of Scientific

Computing. May 2010.

• G. May, F. Iacono, A. Jameson. A Hybrid Multilevel Method for High-Order

Discretization of the Euler Equations on Unstructured Meshes, Journal of Com-

putational Physics. May 2010.

• A. Jameson. A Proof of the Stability of the Spectral Difference Method for All

Orders of Accuracy, Journal of Scientific Computing. January 2010.

• C. Liang, S. Premasuthan, A. Jameson. High-order Accurate Simulation of

Low-Mach Laminar Flow Past Two Side-by-Side Cylinders Using Spectral Dif-

ference Method. Journal of Computers and Structures. February 2009.

• C. Liang, A. Jameson, Z. Wang. Spectral Difference Method for Compressible

Flow on Unstructured Grids with Mixed Elements, Journal of Computational

Physics. January 2009.

Full length conference papers resulting from the research include:

• P. Castonguay, A. Jameson. Simulation of Transitional Flow over Airfoils using

the Spectral Difference Method. To be presented at the AIAA Computational

Fluid Dynamics Meeting. Chicago, Illinois. June 2010.

• K. Ou, A. Jameson. A High-Order Spectral Difference Method for Fluid-

Structure Interaction on Dynamic Deforming Meshes. To be presented at the

AIAA Computational Fluid Dynamics Meeting. Chicago, Illinois. June 2010.
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• Y. Li, S. Premasuthan, A. Jameson. Comparison of h and p Adaptations for

Spectral Difference Methods. To be presented at the AIAA Computational

Fluid Dynamics Meeting. Chicago, Illinois. June 2010.

• S. Premasuthan, C. Liang, A. Jameson. Computation of Flows with Shocks

Using Spectral Difference Scheme with Artificial Viscosity, AIAA Aerospace

Sciences Meeting. Orlando, Florida. January 2010.

• K. Ou, C. Liang, A. Jameson. A High-Order Spectral Difference Method for

the Navier-Stokes Equations on Unstructured Moving Deformable Grids, AIAA

Aerospace Sciences Meeting. Orlando, Florida. January 2010.

• C. Liang, S. Premasuthan, A. Jameson, Z. Wang. Large Eddy Simulation of

Compressible Turbulent Channel Flow with Spectral Difference Method. AIAA

Aerospace Sciences Meeting. Orlando, Florida. January 2009.

• S. Premasuthan, C. Liang, A. Jameson, Z. Wang. p-Multigrid Spectral Differ-

ence Method For Viscous Compressible Flow Using 2D Quadrilateral Meshes.

AIAA Aerospace Sciences Meeting. Orlando, Florida. January 2009.

• S. Premasuthan, C. Liang, A. Jameson. A Spectral Difference Method for Vis-

cous Compressible Flows With Shocks. AIAA Computational Fluid Dynamics

Meeting. San Antonio, Texas. June 2009.

• K. Ou, C. Liang, S. Premasuthan, A. Jameson. High-Order Spectral Difference

Simulation of Laminar Compressible Flow Over Two Counter-Rotating Cylin-

ders. AIAA Computational Fluid Dynamics Meeting. San Antonio, Texas.

June 2009.
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PhD dissertations resulting from the research include:

• S. Premasuthan. Towards an Efficient and Robust High Order Accurate Flow

Solver for Viscous Compressible Flow. Ph.D. Dissertation, Stanford University,

March 2010.

Awards received during the research period include:

• A. Jameson. Elmer A. Sperry Award.

2.2 Algorithm Analysis and Development

2.2.1 Proof of Stability of the Spectral Difference Method

It has been demonstrated that for the case of one-dimensional (1D) linear advection,

the SD method is stable for all orders of accuracy in a norm of Sobolev type (provided

that the interior flux collocation points are placed at the zeros of the corresponding

Legendre polynomials). The proof is based on an energy method. For solution poly-

nomials of degree k (which result in a scheme of order k+1), stability is demonstrated

with a norm of the form

||u|| =

∫
(u2 + β2kcu(k)2) dx, (2.1)

where β is a piecewise constant scaling factor and c is a k dependent coefficient. For

further details see Jameson [9].
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2.2.2 Development of Energy Stable Flux Reconstruction Schemes

The FR approach [18] to high-order methods is robust, efficient, simple to imple-

ment, and allows various high-order schemes, such as the nodal DG method and the

SD method, to be cast within a single unifying framework. We have identified a new

class of one-dimensional energy stable FR schemes. The energy stable schemes are

parameterized by a single scalar quantity, which if chosen judiciously leads to the

recovery of various well known high-order methods (including the nodal DG method

and a particular SD method), as well as one other FR scheme that was previously

found to be stable by Huynh [18]. The analysis offers significant insight into why

certain FR schemes are stable, whereas others are not. Also, from a practical stand-

point, the analysis provides a simple prescription for implementing an infinite range

of energy stable high-order methods via the particularly intuitive FR approach. We

are currently working to extend the formulation to simplex elements. For further

details see Vincent, Castonguay and Jameson [10].

2.3 Code Development

2.3.1 Two-Dimensional Compressible Viscous Flow Solver

A 2D viscous compressible SD flow solver has been written in FORTRAN. The solver,

which is based on the approach presented by Wang [19], can run on meshes contain-

ing both straight-sided and curved-sided quadrilateral elements. An methodology

for applying the code to unstructured mixed meshes containing both triangular and

quadrangular elements has also been developed [20].
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2.3.2 Three-Dimensional Compressible Viscous Flow Solver

A 3D viscous compressible SD flow solver has been written in FORTRAN. The solver,

which is based on the approach presented by Wang [19], can run on meshes containing

both straight-sided and curved-sided hexahedral elements. To facilitate simulating

flow in large 3D geometries the solver has been parallelized for use on CPU clusters

using MPI.

2.3.3 Shock Capturing

One of the greatest restrictions of high-order unstructured solvers is their inability to

handle flow discontinuities. When flows develop steep gradients such as shock waves

or contact surfaces, non-physical spurious oscillations arise that cause the simulations

to become unstable. For higher-order approximations, it is typically necessary to add

explicit dissipation in order to obtain a stable solution. But this has a negative effect

on accuracy, and the resolution of turbulent scales. The development of numerical

algorithms that capture discontinuities and also resolve the scales of turbulence in

compressible turbulent flows remains a significant challenge.

In this study the shock capturing approach of Cook and Cabot [21] has been adapted

to the SD method. The scheme adds artificial viscosity to the flow when disconti-

nuities are present [11][12]. This causes the discontinuities to be smeared out over

a single (high-order) SD element, thus precluding the development of any spurious

oscillations. Results illustrating the shock pattern for supersonic 2D flow over a bump

are shown in Fig. 1.
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(a)

(b)

(c)

Figure 1: Shock pattern resulting from 2D supersonic flow over a bump calculated
using a third-order SD method with artificial viscosity. The computational mesh is
shown in (a), artificial bulk viscosity is shown in (b) and pressure contours are shown
in (c). Note that artificial bulk viscosity is only added in the presence of shocks.
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2.3.4 Automatic Mesh Refinement

An optimal computational mesh should be able to capture details of the flow solu-

tion, yet avoid unnecessary resolution of regions in which the flow is predominantly

uniform. In order to generate such optimal meshes a priori knowledge of the flow

physics is required, as well as an understanding of how the chosen numerical scheme

performs. Obtaining such information, and generating such optimal meshes, is often

very difficult, if not impossible. Therefore, to mitigate these issues, various adaptive

meshing techniques have been developed.

Adaptive meshing techniques allow the mesh to be automatically modified based on

the flow solution. The nature of these modifications is usually determined by error

indicators calculated from the flow as it develops (for example local entropy error

may be used as an indicator for isentropic flows). Regions with higher error are

then refined, and in some cases regions with lower errors unrefined. For high-order

schemes, such as SD and DG type methods, refinement can occur in a variety of

ways. These include reduction of the element size (h-type refinement), increasing the

element order (p-type refinement), or a combination of both (hp-type refinement).

Various error estimation and mesh refinement strategies have been implemented and

tested within our in-house 2D SD flow solver [12]. An illustration of how h-type re-

finement has be used to improve resolution of shock waves (forming due to supersonic

flow over a bump) is shown in Fig. 2. Note that artificial viscosity is also employed

to ensure that the SD scheme is stable in the presence of the shock waves.
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(a)

(b)

(c)

(d)

Figure 2: An example of how adaptive h-type mesh refinement can facilitate resolution
of shock waves at Mach 1.4. The original mesh is shown in (a) and the original
solution in (b). The automatically refined mesh is shown in (c) and the resulting
refined solution in (d). Note that artificial viscosity is also employed to ensure that
the SD scheme is stable in the presence of the shock waves.

15



2.3.5 Mesh Deformation

Mesh deformation algorithms have been implemented within our in-house 2D SD

flow solver. In the schemes we have implemented, deformation of physical bound-

aries causes rigid displacement of nearby elements. This deformation is then blended

smoothly into the mesh, such that the mesh at far field boundaries, or some other

desirable portions of the flow domain, remains unaltered.

Deformation of the physical mesh is achieved via time-dependent variations of the

metrics and the Jacobian that define the mapping of each physical element to a

standard reference element. Such an approach preserves the high-order accuracy of

the SD method since the governing equations are always solved in a steady reference

element.

An example of mesh deformation and mesh blending is shown in Fig. 3. The undis-

torted passage of an Euler vortex across a mesh undergoing significant deformations

in shown in Fig. 4.
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An example of a blended mesh for a rotating and translating cylinder in an O-mesh is illustrated in the
following figure.

(a) Mesh with Deformation (b) Original Undeformed Mesh
Figure 1. Blended Deforming Mesh in Comparison with its Original Mesh

V. Geometry Conservation Law

Thomas and Lombard17 pointed out that the mapping Jacobian J, used to compute the conservative
variables, must be consistent with the value of effective volume implied by the difference scheme, or the
solution of the conservative variables will be in error. The Geometry Conservation Law, as discussed by
Thomas and Lombard,17 governs the spatial volume element under an arbitrary mapping. In differential
form, it is written as:

∂J

∂t
+

∂(Jxr
t )

∂xr
+

∂(Jyr
t )

∂yr
= 0 (25)

where superscript r indicates fixed reference domain

This consistency can be enforced if the Jacobian J is solved numerically with the same finite difference
scheme that is used to integrate the flow conservation laws. However, as pointed out in the paper by Persson
etc12 from their numerical experiments, while Geometry Conservation Law improves accuracy for low order
approximations, the fulfillment of which is not necessary for stability or accuracy. In this paper, we also plan
to better quantify the effect of it, but it has not been implemented in the current numerical simulation.

VI. Spectral Difference Method

For the application of the spectral different method to unsteady moving boundary problems, there are
three coordinate systems of interest, i.e. the computational space, the reference space, and the physical
space. The computational space is a cartesian domain with standard unit square element. The reference
space can be considered as the physical space at time t = 0 when the boundary is initially at rest and has
not been displaced. The reference space is in general an unstructured quadrilateral mesh domain. Finally,
the physical space is the reference space undergoing a prescribed time dependent rigid motion. We define
these three spaces as:

Dphy ≡ (x, y), Dref ≡ (X, Y ), and Dcmp ≡ (η, ξ)

With three coordinate systems, we need two transformations for the computation of the unsteady flow
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(b)

Figure 3: An illustration of how mesh deformation algorithms can be used to blend
a rigid displacement of elements near a deformation into stationary elements at the
boundary of the domain. The original mesh is shown in (a) and the resulting deformed
mesh is shown in (b).
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VIII.C. Plunging Cylinder on a Deformable Mesh

While the spatial and temporal orders have been demonstrated in the previous section for the euler vortex
problem, for meshes deforming according to analytical functions as well as blending functions, in this section
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Figure 7. The Convergence of the 5th Order SD and 3rd Order ERK3 in dynamic deforming domain for the euler
vortex problem

VIII.C. Plunging Cylinder on a Deformable Mesh

While the spatial and temporal orders have been demonstrated in the previous section for the euler vortex
problem, for meshes deforming according to analytical functions as well as blending functions, in this section

12 of 17
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(b)

Figure 4: The initial pressure distribution in an Euler vortex is shown in (a). The
pressure distribution after translation over a mesh undergoing spatial and temporal
deformations is shown in (b). Note the the structure of the vortex remains uniform
despite the non-uniform mesh deformation.

17



2.3.6 Convergence Acceleration

Efficient p-multigrid and implicit time integration methods have been implemented

to accelerate the convergence of high-order SD schemes to steady-state [14]. To test

the methods 2D steady viscous flow over an airfoil at Re = 5000 has been investi-

gated. A p-multigrid approach utilizing a 3-level V-cycle with 1-1-6-1-1 smoothing

iterations was compared with an implicit time-stepping approach utilizing LU-SGS

inner iterations. The convergence history of the residual is shown in Fig. 5. Results

for an explicit third-order Runge-Kutta scheme are also shown for comparison. It can

be seen that the p-multigrid approach reduced the computational cost by a factor of

eight compared with the explicit third-order Runge-Kutta scheme, while the LU-SGS

approach reduced the computational cost by factor of 100. These results indicate

that by using efficient convergence acceleration techniques, the computational cost to

reach a steady-state solution using the SD method can be greatly reduced.
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Figure 5: Plots of the residual against CPU time for an SD simulation of steady-
state viscous flow over an airfoil at Re = 5000. Results for three time-integration
schemes are shown. These include a p-multigrid approach utilizing a 3-level V-cycle
with 1-1-6-1-1 smoothing iterations, an implicit time-stepping approach utilizing LU-
SGS inner iterations, and an explicit third-order Runge-Kutta scheme. It can be
seen that the p-multigrid approach reduces the computational cost by a factor of
eight compared with the explicit third-order Runge-Kutta scheme, while the LU-SGS
approach reduces the computational cost by factor of 100.

2.4 Code Utilization

2.4.1 Two-Dimensional Flow over Cylinders

Simulations of flow over a pair of stationary cylinders have been undertaken using our

in-house 2D SD viscous compressible flow solver. Vorticity contours for cases where

the cylinder separation is three times the cylinder diameter are shown for various

Reynolds numbers (Re) in Fig. 6. For further details see Liang, Premasuthan and
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Jameson [15].

(a) (b)

Figure 6: Plots of vorticity over a pair of stationary cylinders. Results are presented
for Re = 100 (a) and Re = 200 (b).

Simulations of flow over a pair of counter rotating cylinders have also been undertaken

using our in-house 2D SD viscous compressible flow solver. The effects of Reynolds

number, compressibility, and rotation speed were all studied. For further details see

Ou, Liang, Premasuthan and Jameson [16].

2.4.2 Two-Dimensional Plunging and Pitching Airfoils

Simulations of flow over plunging and pitching NACA0012 airfoils have been under-

taken using our in-house 2D SD viscous compressible flow solver. The plunging airfoil

simulations were based on water tunnel experiments performed by Jones et al. [22]

at Re = 1850. Fig. 7 shows that the pattern of vortical structures obtained via our

numerical simulations compares well with experimental results. In particular, the

simulations were able to reproduce the fine structures occurring in the wake of the

plunging airfoil.
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(a)

(b)

Figure 7: Vorticity over a plunging NACA0012 airfoil at Re = 1850 calculated using
a forth-order SD scheme (a) is compared with an analogous experimental result from
Jones et al. [22] (b). The numerical results compare well with the experimental
results. In particular, the simulations were able to reproduce the fine structures
occurring in the wake of the plunging airfoil.

The pitching airfoil simulations were based on water tunnel experiments performed

by Koochesfahani et al. [23]. Fig. 8 shows two comparisons between our numerical

simulations and experiments (each with a different pitching frequency). In the first
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case the wake assumes the form of an undulating vortex sheet, and in the second case

a double-vortex structure is seen to persist downstream of the airfoil. In both cases

results of our simulations are seen to compare well with the experimental data.

(a)

(b)

Figure 8: Vorticity over a pitching NACA0012 airfoil at Re = 1.2 × 104 calculated
using a forth-order SD scheme (a) is compared with an analogous experimental result
from Koochesfahani et al. [23] (b).

2.4.3 Two-Dimensional Interaction of a Cylinder Wake with a Deforming

Beam

Simulations of flow over a cylinder connected to a beam undergoing a prescribed

deformation have been undertaken using our in-house 2D SD viscous compressible

flow solver. The setup acts as a simple 2D model of a body connected to a single

flapping wing. Plots of vorticity within the vicinity of the configuration are shown at

various instances in Fig. 9.
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(a)

(b)

(c)

(d)

Figure 9: Plots of vorticity over a cylinder connected to a beam undergoing a pre-
scribed deformation. Various instances in time are shown; specifically the peak of the
upstroke (a), the following neutral position (b), the peak of the downstroke (c) and
the following neutral position (d).
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2.4.4 Three-Dimensional Turbulent Channel Flow

Large Eddy Simulations of compressible turbulent channel flow were undertaken using

the SD method [17]. Contours of spanwise vorticity in the center plane of the channel

obtained using a fourth-order SD scheme are shown in Fig. 10. The predicted mean

and root mean squared velocity profiles were found to be in good agreement with

direct numerical simulation results obtained by Moser, Kim and Mansour [24].

Figure 10: Contours of spanwise vorticity in the center plane of the channel obtained
using a fourth-order SD scheme.

2.4.5 Three-Dimensional Turbulent Flow Over an Airfoil

Simulations of flow over an SD7003 airfoil at a 4◦ angle of attack have been performed

using our in-house 3D viscous compressible SD flow solver. The SD7003 airfoil was

selected due to availability of existing experimental [25] and computational data [26].

Forth-order accurate simulations were undertaken on meshes with 1.7 × 106 degrees

of freedom at Re = 1 × 104 and Re = 6 × 104. When Re = 1 × 104 the flow was

essentially 2D with close-to-periodic vortex shedding (see Fig. 11(a)). The computed
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average lift coefficient was 0.381 and the average drag coefficient was 0.0497, which

are consistent with those obtained by Uranga et al. [26]. At a Reynolds number of

Re = 6×104 transition was observed to take place across a laminar separation bubble

(see Fig. 11(b)).

The Q-criterion Q provides a mean of visualizing vortex cores and identify turbulent

structures. It can be calculated as

Q =
1

2
(ΩijΩij − SijSij) (2.2)

where

Ωij =

(
∂ui

∂xj

− ∂uj

∂xi

)
, Sij =

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.3)

are the anti-symmetric and symmetric parts of the velocity gradient tensor respec-

tively. Fig. 11 shows instantaneous iso-surfaces of Q over the SD7003 airfoil for cases

where Re = 1× 104 and Re = 6× 104.
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(a)

(b)

Figure 11: Instantaneous iso-surfaces of Q above an SD7003 airfoil at a 4◦ angle of
attack. When Re = 1 × 104 (a) the flow is essentially 2D and remains laminar over
the wing surface, while at Re = 6 × 104 (b) transition takes place across a laminar
separation bubble.

Use of the SD method with an implicit large eddy simulation approach appears to be

capable of accurately predicting the laminar separation and transition locations over

an SD7003 airfoil at Re = 6 × 104. To the best of our knowledge, this study is the

first attempt to analyze transitional flow using the SD method.

2.4.6 Three-Dimensional Flapping Wing

Preliminary simulations of viscous compressible flow over a SD7003 airfoil undergoing

a prescribed flapping motion have been undertaken using our in-house 3D viscous

compressible SD flow solver. The geometry and nature of the prescribed motion are

illustrated in Fig. 12.
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Figure 12: Deforming SD7003 airfoil at bottom of cycle (a), middle of cycle (b), and
top of cycle (c).

3 Conclusions

A summary has been given of research carried out under award number FA9550-

07-1-0195 from the Air Force Office of Scientific Research. The objective of the pro-

posed research was to develop and implement high-order numerical algorithms for the

simulation of steady and unsteady compressible viscous flows with shocks. Notable

achievements have been made in three areas, namely algorithm analysis and develop-

ment, code development, and code utilization (to investigate various flow problems).

With regards to algorithm analysis and development, it has been proved for one-

dimensional linear advection that the SD method is stable for all orders of accuracy

in a norm of Sobolev type (provided that the interior flux collocation points are

placed at the zeros of the corresponding Legendre polynomials). Also, a new range

of energy stable high-order methods based on the so called FR approach have been

identified. With regards to code development, two-dimensional and three-dimensional

compressible viscous flow solvers based on the spectral difference method have been
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written. Within the aforementioned codes a range of shock capturing, automatic

mesh refinement, mesh deformation, and convergence acceleration algorithms have

been implemented and tested. With regards to code utilization, viscous compressible

flow over various 2D configurations has been investigated. These configurations in-

clude pairs of cylinders (both stationary and rotating), plunging and pitching airfoils,

and a deforming beam in the wake of a cylinder. In 3D, turbulent channel flow and

turbulent flow over an airfoil have been investigated, and preliminary simulations of

viscous compressible flow over a flapping wing have been undertaken.
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